Регистрация доменов по супер выгодной цене!

Сокращение трубочек заставляет белки двигаться по эндоплазматическому ретикулуму

Рис. 1. Схема строения эндоплазматического ретикулума. Рисунок с сайта en.wikipedia.org

Несмотря на древнюю историю микроскопии, возможность наблюдать за множеством молекул в реальном времени в живых клетках биологи получили относительно недавно. Но теперь, например, можно строить и анализировать траектории отдельных молекул, двигающихся внутри клетки и ее органелл. Авторы недавней статьи, опубликованной в журнале Nature Cell Biology, решили разобраться, за счет чего перемещаются молекулы по эндоплазматическому ретикулуму — системе мембранных каналов и полостей, в которых созревают многие клеточные белки. Оказалось, что это происходит из-за периодических сокращений некоторых трубочек, которые разгоняют люминальную жидкость, заполняющую эту органеллу.

Любая клетка в составе многоклеточного организма постоянно сообщается с другими клетками, выделяя в межклеточную среду разнообразные белки. Они доставляются к клеточной мембране внутри маленьких мембранных пузырьков — везикул, которые сливаются с мембраной клетки, высвобождая свой груз наружу. Везикулы отпочковываются от большой мембранной системы внутри клетки — эндоплазматического ретикулума (ЭПР). ЭПР представляет собой систему ограниченных фосфолипидной мембраной полостей, которые из-за характерной формы называются трубочками и цистернами. Сочленения между трубочками и цистернами называют узлами.

Функционально и морфологически ЭПР подразделяется на шероховатый и гладкий (рис. 1). Поверхность шероховатого ЭПР густо усеяна рибосомами — клеточными фабриками по производству белков. На гладком ЭПР рибосом нет, поэтому он не принимает участие в синтезе белка. Вместо этого он служит местом синтеза многих липидов и внутриклеточным депо ионов кальция.

Рибосомы, сидящие на шероховатом ЭПР, синтезируют белки, отправляя их во внутреннее пространство ЭПР — люмен. Люмен заполнен люминальной жидкостью, по составу близкой к цитоплазме. Произведенные рибосомами полипептидные цепочки сами по себе еще не являются функциональными белками. После трансляции специальные белки — шапероны — придают им нужную пространственную структуру, другие белки навешивают углеводные группы, соединяют остатки цистеина друг с другом, образуя цистеиновые мостики. Ферменты, осуществляющие все эти реакции, плавают в люминальной жидкости, по очереди «обрабатывая» созревающий белок.

Важный вопрос: как именно двигаются созревающие белки внутри люмена? Первоначально считалось, что это происходит из-за диффузии, то есть они просто хаотически двигаются между молекулами воды в люмене без участия какой-либо дополнительной помощи. Однако это предположение имеет слабые места. Прежде всего, при диффузии движение молекул слишком медленное и ненаправленное для того, чтобы белки, предназначенные для секреции, проходили насквозь весь ЭПР и отпочковывались в составе везикулы с нужной его стороны (которая обращена к клеточной мембране). Так что вопрос оставался открытым.

Недавно в журнале Nature Cell Biology были опубликованы результаты группы ученых из Кембриджского университета и Высшей нормальной школы во главе с Эдвардом Авезовым (см.: Avezov Lab). Они изучали перемещение молекул белков по эндоплазматическому ретикулуму непосредственно в живых клетках с помощью микроскопии сверхвысокого разрешения и анализа траекторий отдельных частиц. Исследования проводились на клетках линий COS7 (похожие на фибробласты клетки из почек обезьяны) и HEK-293 (клетки почки человеческих эмбрионов). Оказалось, что внутри ЭПР текут настоящие потоки, причем некоторые из них создаются за счет сокращения трубочек, которое протекает с затратой энергии. Открытие активного тока жидкости внутри ЭПР позволяет следить его за динамикой, что особенно важно для изучения биологии клеток с сильно развитым ЭПР (например, нейронов).

Уже некоторое время известно, что перемещение белков по ЭПР сопровождается затратой энергии в виде АТФ (см., например, M. J. Dayel et al., 1999. Diffusion of green fluorescent protein in the aqueous-phase lumen of endoplasmic reticulum). Это было показано в экспериментах по восстановлению флуоресценции после фотообесцвечивания (fluorescence recovery after photobleaching, FRAP), в ходе которых в клетки в виде плазмид доставляли гены, кодирующие белки ЭПР с флуоресцентной частью, что позволяет наблюдать за их движением в микроскоп в реальном времени. Далее с помощью лазера выжигались белки в определенном участке ЭПР: содержащиеся в нем белки разрушались и этот участок превращался в черное пятно. Однако за счет того, что белки внутри ЭПР находятся в постоянном движении, постепенно брешь заполнялась новыми флуоресцентными молекулами. Однако, если в клетке было заблокировано образование АТФ, то черное пятно не заполнялось.

В обсуждаемом исследовании ученые воспользовались тем, что современные возможности микроскопии и вычислительные мощности таковы, что можно одновременно отслеживать движение множества отдельных молекул (Single-particle tracking, SPT) внутри ЭПР в живых клетках. При этом удается определять не только направление движения молекул, но и их скорость. Сначала были воспроизведены результаты о зависимости движения белков в ЭПР от АТФ: при экспериментально вызванной нехватке АТФ движение фотоактивируемого флуоресцентного белка резко замедлялось, и его молекулы не покидали область наблюдения. Так ученые удостоверились в том, что их методы подходят для работы с ЭПР. Очертания, получившиеся при наложении траекторий отдельных молекул друг на друга, соответствовали контуру сети ЭПР, что свидетельствует о достоверности данных, получаемых с помощью метода SPT (рис. 2). Эксперименты повторили на трех линиях клеток, и во всех случаях экспериментально вызванная нехватка АТФ приводила к замедлению движения молекул, хотя в клетках некоторых линий молекулы двигались быстрее, чем в других. Анализ траекторий молекул показал, что молекула, находящаяся в любом месте ЭПР, имеет шанс обойти весь люмен, что согласуется с укоренившимся представлением об ЭПР как о непрерывной сети трубочек и цистерн.

Сокращение трубочек заставляет белки двигаться по эндоплазматическому ретикулуму

Рис. 2. Слева — контур ЭПР, реконструированный по траекториям молекул; цвет отражает плотность молекул (чем светлее, тем выше плотность). Справа — восстановленный при помощи компьютерного моделирования «скелет» эндоплазматического ретикулума; трубочки показаны фиолетовым, узлы — зеленым. Рисунок из обсуждаемой статьи в Nature Cell Biology

Затем были проанализированы скорости белковых молекул. Оказалось, что в узлах ЭПР они движутся медленно (по всей вероятности, за счет диффузии), а вот внутри трубочек и цистерн молекулы движутся гораздо быстрее (рис. 3). Применив еще один современный метод микроскопии (structured illumination microscopy, SIM), ученые обнаружили, что время от времени некоторые трубочки ЭПР пульсируют. Какой механизм обеспечивает сокращение трубочек ЭПР и какие белки в этом участвуют, пока выяснить не удалось, но ясно, что АТФ тратится именно здесь. По всей видимости, эти сокращения как раз и разгоняют люминальную жидкость, потоки которой увлекают молекулы белков. Любопытно, что молекулы в разных частях ЭПР ускоряются и замедляются асинхронно, однако пульсации трубочек устроены так, что течение жидкости не останавливается.

Сокращение трубочек заставляет белки двигаться по эндоплазматическому ретикулуму

Рис. 3. Слева — наложение траекторий отслеженных молекул в ЭПР одной клетки. Цветами показана скорость молекул в разных участках траектории: голубым — медленная (0–10 мкм/с), красным — быстрая (около 30 мкм/с). Справа — результаты анализа ЭПР на связность, траектории молекул окрашены в соответствии с количеством посещенных узлов: темно-синий — 1 узел, синий — 2 узла, …, красный — 8 узлов. Рисунки из обсуждаемой статьи в Nature Cell Biology

Подводя итог, можно сказать, что хотя на вопрос о причине движения белков по ЭПР теперь получен ответ, до полного понимания этого процесса, благодаря которому даже в клетках с очень протяженным ЭПР (например, в моторных нейронах) транспорт белков происходит без задержек, нам еще далеко. Дальнейшие исследования в этом направлении могут помочь справиться с некоторыми наследственными заболеваниями, например, со спастической параплегией (hereditary spastic paraplegia), которая выражается в прогрессирующей мышечной слабости и, возможно, вызвана нарушениями в циркуляции жидкости внутри ЭПР.

Источник: elementy.ru

Узнать тарифы на безлимитный и надежный хостинг
ПОДЕЛИТЬСЯ

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here

три × пять =